ALIZADEH ALIREZA TECHNICAL SALES ENGINEER DANIELI BREDA

4TH IIAC IRAN INTERNATIONAL ALUMINIUM CONFERENCE OLYMPIC HOTEL TEHRAN, IRAN 11-12 MAY 2016

ENERGY SAVING IN EXTRUSION PRESSES Latest developments

DANIELI PASSION TO INNOVATE AND PERFORM IN THE METALS INDUSTRY

- 1. EXTRUSION PROCESS
- 2. STUDY 1: EFFICIENCY CHARACTERIZATION TESTS
- 3. STUDY 2: SIMULATION OF EXTRUSION PRODUCT MIX
- 4. A FURTHER STEP AHEAD: T-WIN
- 5. MELTING, HEATING AND HEAT TREATMENT TECHNOLOGIES

- > Extrusion phase: Efficiency optimization \rightarrow energy saving
- > Dead Cycle Time: Cycle optimization
- > **Isothermal extrusion:** Process control

- \rightarrow productivity
- \rightarrow productivity / quality

DRIVE:	SOFT STARTER
MOTOR:	ASYNCHRONOUS TRIPHASE
PUMP:	VARIABLE DISPLACEMENT

FP+VFD

VP+VFD

DRIVE:	VARIABLE FREQUENCY DRIVE	
MOTOR:	ASYNCHRONOUS TRIPHASE	
PUMP:	FIXED DISPLACEMENT	

DRIVE:	VARIABLE FREQUENCY DRIVE
MOTOR:	ASYNCHRONOUS TRIPHASE
PUMP:	VARIABLE DISPLACEMENT

	DRIVE	HYDRAULICS	PROPERTIES
VP+SS	SOFT START MOTOR DRIVE	ELECTRONIC PROPORTIONAL VARIABLE	Simple electronic system Easy implementation on existing plant Low efficiency with low flow rate Poor cosφ Start&Stop reduces pumps life Small pump required for low extrusion speed
FP+VFD	UARIABLE SPEED	FIX PUMP	Easy maintenance Higher speed High cosφ High inverter consumption High cost of big size inverters Lower and more stressing dynamics Small pumps required for low extrusion speed
VP+VFD	UARIABLE SPEED	ELECTRONIC PROPORTIONAL VARIABLE PUMP	Maximum motor and pump efficiency High dynamics, high speed High cosφ Excellent press. & speed control even at low speed No small pump 15-20% saving on installed power

PROCESS CONTROL

DANIELI

CONTROL PARAMETERS:

- > Speed
- > Pressure
- > Power
- > Temperature
- > Working hours

Flow rate is a function of swivel angle $\boldsymbol{\alpha}$

$$Q = \frac{Vp(\alpha) * n * \eta_{vol}}{1000}$$

Power is a function of flow rate Q

 $W = \frac{Pa * Q}{600 * \eta_{el}}$

Q: Flow rate [l/min] Vp: Displacement [cm³] n: Ring per minute [rpm] ηvol: Pump efficiency

W: Power [Kw] Pa: Pressure [bar] ηel: Motor efficiency

Max Delivery

Delivery Zero

DANIELI

MAPPING

CONSUMPTION

OPTIMUM

ENERGY SAVING

Mapping on:

- > Speed
- > Swivel angle
- > Pressure
- > Torque

DANIELI

MAPPING

CONSUMPTION

OPTIMUM

ENERGY SAVING

DANIELI

MAPPING

CONSUMPTION

OPTIMUM

ENERGY SAVING

Time

PURPOSES & METHODS

DANIELI

MAPPING

CONSUMPTION

OPTIMUM

ENERGY SAVING

EQUIPMENT & TOOLS

RESULTS

ELECTRICAL DRIVE COMPARISON

Press capacity (310 bar / 4,496 psi)	25 (2,810)	MN (UST)
Max. Working Pressure	310 (4,496)	bar (psi)
Operating Pressure	280 (4,061)	bar (psi)
Max Extrusion speed	25 (0.98)	mm/s (in/s)
Extrusion Speed at operating pressure	16,6 (0.65)	mm/s (in/s)
Extrusion Speed at 310bar	15 (0.59)	mm/s (in/s)
Minumum Extrusion Speed	0,2 (0.008)	mm/s (in/s)
Dead Cycle Time Without burp With burp 	13 15	S S

	(CLASSIC	B) VP+SS			C) FP+VFD		D) VP+VFD	
PUMPS	Qty	Power [kW (HP)]	Qty	Power [kW (HP)]	Qty	Power [kW (HP)]	Qty	Power [kW (HP)]	
Main (250cc)	4	110 (147.5) at 1,480 rpm	4	110 (147.5) at 1,480 rpm	4	110 (147.5) at 1,480 rpm	4	110 (147.5) at 1,480 rpm	
Auxiliary	1	75 (100.6)	1	75 (100.6)	1	75 (100.6)	1	75 (100.6)	
Container sealing	1	18.5 (24.8)	1	18.5 (24.8)	1	18.5 (24.8)	1	18.5 (24.8)	
Piloting	1	45(60.3)	i	45(60.3)	Û	-	Û	-	
Main Small	1	75 (100.6)	1	75 (100.6)	1	75 (100.6)	1	-	
Cool and Filter	1	30 (40.3)	1	30 (40.3)	1	30 (40.3)	1	30 (40.3)	
ΤΟΤΑΙ		683.5 (916.6)		683.5 (916.6)		638.5 (856.2)		563.5 (755.7)	

PRODUCT MIX 1 GENERAL EXTRUSION

DANIELI

Typical Alloys: EN AW 6060, 6063

Typical Specific pressure: 500÷650 N/mm² (73÷94 kpsi)

Die changing: every 30 billets Die changing time: 30 s

	Product Mix	Average Extrus Pressure	sion	Extrusion Speed		
	40%	280 Bar (4,061 p	osi)	5 mm/s (0.20 in/s)		
	50%	250 Bar (3,626 p	osi)	7.5 mm/	s (0.30 in/s)	
	20%	200 Bar (2,901 p	osi)	15 mm/s	15 mm/s (0.59 in/s)	
THEO CONS	RETICAL ENERGY SUMPTION [KWH/TON]	CLASSIC	VP+SS	FP+VSD	VP+VSD	
Main	Pumps	93.5	90.3	86.4	84.3	
Pilot o	circuit	0.9	0.9	-	-	
Invert	ers	-	-	5.9	4.3	
Dynar	mic Load	-	-	1.9	-	
Auxilia	aries & Cooling	8.1	8.1	8.1	8.0	
TOT/ Alum	AL ENERGY / Iinum Ton	102.5	99.3	102.3	96.6	
Adva Class	intage respect to sic	-	3%	-0%	6%	

PRODUCT MIX 1 GENERAL EXTRUSION

PRODUCT MIX 2 AUTOMOTIVE ALLOY

DANIELI

Typical Alloys: EN AW 6106, 6082, 7003

Typical Specific pressure: 650÷900 N/mm² (94÷131 kpsi)

Die changing: every 30 billets Die changing time: 30 s

Product Mix	Average Ex Pressure	trusion	Extrusion Speed			
35%	280 Bar <u>(</u> 4,0	161 psi)	1.5 mn	1.5 mm/s (<i>0.06 in/s</i>)		
40%	270 Bar (3.9	16 psi)	3.5 mn	n/s (<i>0.14 in/s</i>)		
20%	250 Bar (3,6	26 psi)	6 mm/:	s (<i>0.24 in/s</i>)		
5%	200 Bar (2 <i>,</i> 9	101 psi)	15 mm	ı/s (0.59 in/s)		
THEORETICAL ENERGY CONSUMPTION [KWH/TON]	CLASSIC	VP+SS	FP+VSD	VP+VSD		
Main Pumps	105.8	96.5	90.7	88.6		
Pilot circuit	2.1	2.1	-	-		
Inverters	-	-	7.8	5.8		
Dynamic Load	-	-	1.8	-		
Auxiliaries & Cooling	19	19	19	18.9		
TOTAL ENERGY / Aluminum Ton	126.9	117.5	119.3	113.4		
Advantage respect to Classic	-	7%	6%	11%		

PRODUCT MIX 2 AUTOMOTIVE ALLOY

PRODUCT MIX 3 MICRO MULTI PORT

DANIELI

Typical Alloys: EN AW 1050, 1070, 1100, 3003, 3103

Typical Specific pressure: 400÷600 N/mm² (58÷87 kpsi)

Coil discharging: every 15 billets Coil discharging time: 15 min

	Product Mix	Average Extrus Pressure	sion	Extrusion Speed		
	30%	280 Bar (4,061	psi)	1 mm/s (0.04 in/s)		
	45%	280 Bar (4,061)	psi)	4 mm/s (0.16 in/s		
	20%	250 Bar (3,626)	psi)	7.5 mm/s (0.30 in/s)		
	5%	200 Bar (2,901	psi)	15 mm/s	s (0.59 in/s)	
THEO CONS	RETICAL ENERGY SUMPTION [KWH/TON]	CLASSIC	VP+SS	FP+VSD	VP+VSD	
Main	Pumps	104.4	94.8	85.5	83.5	
Pilot o	circuit	2.3	2.3	-	-	
Invert	ers	-	-	7.8	5.8	
Dyna	mic Load	-	-	1.7	-	
Auxili	aries & Cooling	21	21	21.1	21	
TOT/ Alum	AL ENERGY / ninum Ton	127.8	118.1	116.1	110.4	
Adva Class	Intage respect to	-	8%	9%	14%	

PRODUCT MIX 3 MICRO MULTI PORT

DISCUSSION: ENERGY & ENVIRONMENT

DISCUSSION: TECHNOLOGICAL PERFORMANCES

VP + VFD: ACHIEVEMENT

- > Energy saving 5% ÷20%, up to 40%
- > Installed power saving 15-20%
- > High dynamic response
- > Fine extrusion pressure regulation
- > Reduced DCT

DISCUSSION: CAPEX & MAINTENANCE

		HYD. SAVINGS	EL. SAVINGS	MAINTENANCE	DURABILITY RELIABILITY	SUMMARY
VP+SS	SOFT START ~ M 3~	×	~~	\checkmark	×	X
FP+VFD	VFD M 3-	~~	×	~~	~	~
VP+VFD		\checkmark	\checkmark	\checkmark	\ \\	~~

DISCUSSION: CAPEX & MAINTENANCE

DANIELI

VARIABLE PUMP + VARIABLE FREQUENCY DRIVE

- > Optimized drives
- > Highest equipment life
- > 5-20% saved installed power
- > No pilot pump
- > No small main pump

SPEED LIMITED TO 1800 RPM MEANS

- > No booster pumps
- > Standard AC motor, NO water cooling
- > Reduced noise emission
- > Pumps life >20000h compared to 6000h working at 2500 rpm

- > Variable Displacement Pumps + Variable Frequency Drive (VP+VFD) stands out as the best performing solution, offering clear advantages in terms of energy savings (5-20%), installed power (15-20%), cosφ, dynamic response, pump life.
- > This solution is also easily applicable to existing presses, either focusing

on a contained low-cost revamping or integrating it into a wider press modernization concept.

T-WIN: DOUBLE CONTAINER EXTRUSION PRESS

DANIELI

Billet loading into container N. 2 while container N. 1 is involved in extrusion

Container N. 2 shifted and billet ready for extrusion, container N. 1 ready for cleaning and new billet loading

A FURTHER STEP AHEAD: T-WIN

CONCEPT

		Standard FL	T-WIN	30 billets/h, 16 h/d, 288 d/y
Dead time at upset start	[s]	11.7	8.4	
Dead time without burp	[s]	13.5	9.8	4 s less in DTC → 134 h/y saved
	[-]		44.5	
Dead time at burp end	[S]	15.5	11.5	more than 4 000 billets
Energy consumption during DCT	[kWh]	0.56	0.41	more than 20,000 kWh saved

DEAD CYCLE TIME

RAPID RE-HEATING NEARLY ZERO LOSSES

MAIN FEATURES

- > Dry-hearth melting for process flexibility with scrap charging.
- > A Tilting system for precise metal pouring to suite specific casting requirements.
- > Weighting cells and a laser system to monitor the quantity and level of molten aluminium poured into the launder system at the final casting line.
- > Proper refractory insulation with high alumina content for minimizing thermal dispersions and maintenance requirements.
- Melting phase with the option of a regenerative burner system to maximize combustion efficiency up to 85%.
- > Uniform temperature pattern to achieve higher melt rates and thus avoid hot spots and thermal NOx.
- > Fully automated process control to ensure repeatability of process parameters.

DANIELI OLIVOTTO FERRÈ

MELTING AND HOLDING FURNACES

DANIELI

ELECTRO-MAGNETIC STIRRER

- > Excellent chemical and temperature homogeneity.
- > Minimized dross formation.
- Improving of heat transfer: difference between top and bottom decreases to less than 5° C in about 2-3 minutes after the start of the stirrer.

EMP SYSTEM (ELECTRO-MAGNETIC-PUMP)

- > Vertical flow patterns: all charged material is instantly submerged in molten metal minimizing the possibility for losses through oxidation.
- > Light gauge scrap (chips) and alloy additions can be charged with the furnace door closed, improving cycle time efficiency.

DANIELI OLIVOTTO FERRÈ

HEATING AND HEAT TREATMENT FURNACES

DANIELI

FURNACES PORTFOLIO

- > Pusher or pit type reheating and homogenizing furnaces for slabs
- > Rapid billet heating furnace
- > Homogenizing furnaces with a dedicated cooling chamber for billets
- > Heat treatment furnaces for coils and foils
- > Solubilization and ageing furnaces for automotive/aerospace components
- > Furnaces can be completely integrated with an automatic handling system
- > Heat-treating furnaces comply with AMS 2750E standards

ALIZADEH ALIREZA TECHNICAL SALES ENGINEER DANIELI BREDA

4TH IIAC IRAN INTERNATIONAL ALUMINIUM CONFERENCE OLYMPIC HOTEL TEHRAN, IRAN 11-12 MAY 2016

ENERGY SAVING IN EXTRUSION PRESSES Latest developments

DANIELI PASSION TO INNOVATE AND PERFORM IN THE METALS INDUSTRY

